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(1) INTRODUCTION

These notes discuss how the predictions
which follow from the theory of special rela-
tivity, such as time dilation and length contrac-
tion, can be derived quite easily from a simply

stated axiom. That axiom is:

ALL THE LAWS OF PHYSICS ARE THE SAME

IN EVERY INERTIAL REFERENCE FRAME.

A careful application of the above axiom will
lead us to what we are after here, the Lorentz
transformation, of which time dilation and length
contraction are a part. What the Lorentz trans-
formation does for us is link measurements made
in one reference system with measurements made in
another reference system moving with constant velo-
city with respect to the first. Once we have de-
rived the Lorentz transformation and have built
up a good comfortable feeling with it, we will
study the consequences of applying the Lorentz
transformation.

The precise genius of Einstein's work in
inventing the theory of special relativity was
in making clear what we mean by certain basic
notions about which we have strong prejudices.

These include the notions of time, measurements

Axiom of special

nelativity

No matter what experi-
ment we do we cannot
tell whether on not we'ne
moving at a constant
velocity.



and reference frames within which measurements
of time andvdistances, that is}space—time mea-
surements, are made. It is important to define
and understand these notions very clearly. Once
one does, the '"common~sense-defying'" predictions
of special relativity follow in a way that is

amazingly simple from the axiom stated above.

(1I1) THE GALILEAN TRANSFORMATION

Before discussing the Galilean transformation,
we will define a very important concept, that of
the inertial reference frame,or simply the inertial

frame.

AN INERTIAL FRAME IS A FRAME OF REFERENCE

IN WHICH A BODY NOT UNDER THE INFLUENCE

OR FORCES AND INITIALLY AT REST WILL REMAIN

AT REST.

Notice that with this definition, accelerating

- frames, such as rotating frames, are not con~

sidered to be inertial frames.

Now the question is, how does one link measure-—
ments made in two inertial frames moving with con-
stant velocity with respect to one another. To
consider a specific example, let's take reference

frame O moving with velocity v with respect to

Deginition of
Anertial frame

Galilean

trans formations



reference frame O' along the x axis.

(See Fig. 1) The transformation from

one reference frame to the other of space

L]

and time coordinates is almost "too obvious'

to require stating 1it:

x' = x + vt

y'= vy

z' = z 1)
t' = t

The above set of equations is referred to

as the Galilean transformation and seems

almost obvious, or is it?

Let us consider what implications this
Galilean transformation has when we analyze
physics with Newton's second law:

¥ema (2)
If we have a particle of mass m as shown in
Fig. 1, the 3 component equations of Eq. (2)
as given in frame O are:

2
F = d<x

x dt?
2"

z at?
These equations then tell us what the motion

of the particle will be in frame 0. If we

Figure 1

Note that equations (1)
Amply that the two origins -
(0 and 0') codincide at t=0.

The Galilean transgormation
Leaves the foam of the Law:

F = ma

unchanged.



transform to frame O'using Eq. (1), we note that

t = t' and d?x"/dt'? = d%x/dt? , the latter
following by differentiating x'=x + vt with
respect to t twice. The second derivatives
with respect to time of y' and z' are equal to

those of y and z, respectively. Also the com-

ponents of the force, F, are the same along x and

x'. Similarly, this holds true for the com—
ponents along the y and z directions. The

result: Newton's laws are the same in any

inertial frame. This we learn from applying

the Galilean transformation.

The other physical phenomena in classical
physics are electromagnetic. All these are
successfully described by the four Maxwell's
Equations which predict the existence of
electromagnetic waves; light is just that, an

electromagnetic wave. It was found that when

one applied the Galilean transformations to

Maxwell's equations, the mathematical form of

the equations changed. Moreover, the electro-

magnetic waves, whose existence was predicted

by Maxwell's equations, had a propagation velocity

which was different in inertial frames which

were moving with uniform velocity with respect |

to one another. There was another way of looking

Acconding to Newton's
Laws. and the Galilean
trans gormation Lt Ls
Ampossible to detect
whether a frame of ne-
gerence L8 at nest on
moving at a constant ve-
Locity., Only nelative mo-
tion can be detected.
This 48 the principle
of relativity.

On the other hand, ac-
cording to Maxwell's equa-
tions and the Galilean
thans formation absolute
undigonum motion can be

detected. Thenefore, ta-

ken together they violate
the principle of
nelativity.



at this problem. All waves travel in a

medium; sound in air, for example. The velocity
of the wave will change if the observer is moving
relative to the medium. It was thought that

there had to be a medium for the electromagnetic
wave, light. This medium was called the ether.
One could imagine that the ether is fixed in

some frame. It would follow then that electro-
magnetic disturbances, in other words, light,
would travel with different velocities in dif-
ferent moving inertial frames. This search for
the ether was carried out in an experiment in 1887
by Michelson and Morley. Their result was a null
result. There was no ether or, to put it another
way, experimentally it was observed that the

speed of light, c, was the same in moving inertial

frames.

So the situation before Einstein and the theory

of special relativity was the following:

The laws of classical mechanics (Newton's laws)

are the same, that is, have the same mathematical

form, in all inertial frames. This we see to be

consistent with the Galilean transformation. How~-

ever, this is not the situation with electromagnetic

‘laws, Maxwell's equations. However, although we

Michelson and Mornley
could not detect absolute
motion U.A‘,(_ng electhomag-
netic effects (see problem

1). What was wiong?

the Galilean trhans-
gormation ?
Maxwell's equations
(eLectromagnetism) ?
Newton's Laws ?
Principle of Rela-
tivity ?

Einstein found that
Maxwell's and the Princi-
ple o4 Relativity were
cornect, and that the
Galilean thansformation
(which became the Lo-
nentz thansformation)
and Newton's second Law
had to be modified.



might expect an ether to exist which would be
the medium for electromagnetic waves, the
experiment of Michelson and Morley showed

that this ether does not exist. Consequently the

speed of light in vacuum is independent of the motion

of the observer and independent of the motion of

the source.

(II1) SOME BASIC NOTIONS

Before we go on to deriving the Lorentz
transformation, we define here some very basic
notions. It is important to do this, since it
was only after earlier prejudices about these
notions were discarded that the dilemma of
classical physics was cleared up and special

relativity invented.

a. Event: The concept of an event in physics
is just as fundamental as the concept of place is Event
in surveying. An event is specified by a place

and time of happening. Therefore, one needs four

coordinates to describe an event: (x, ¥y, 2z, t).
Example of an event: a flash of light

b. Time: This is most crucial. Time, at'leasﬁ
as far as it concerns the physicist, is not a
metaphysical, absolute "flowing" thing. Rather,

. T4
it is no more sacred than space. If we have ame

THE IMPORTANT ASSUMP-
TION IN EINSTEIN'S THEORY
OF SPECTIAL RELATIVITY



two events, each specified by space-time Note: Wheeler and
Taylon 4in thein
Spacetime Physich
{pg. 1 §§) tell an
amusing parable

coordinates (x, y, z, t) and (xb, Yoo Zg» to),

we measure the distance between these events in
meters, for eéxample. That means we hold a meter
stick in our hand and count how many tick marks hich points out
on the meter stick lie between x and x . We do Lime-space prejudices.
o
the same for y and Y, and z and z . What about
o .

t and t .
o

Well, t and 5) should be treated exactly

the same way as x and %, or y and yo and z and |
Z,. Only this time instead of counting how many
ticks on the meter stick are between x and xo,
. we measure how many ticks of a clock there are
between t and to. So we measure the x, y and

z separations between events in meters, but the
time separations in seconds. With the discovery
that light as determined by all observers always
travels at the same speed, c, we can use such a

speed as a conversion factor between time intervals

and space intervals.

c. Clocks: Clocks are things which produce ticks

which allow us to measure time intervals. CLocks

Examples are: 1) mechanical clock
2) rotating earth

3) your own pulse



We'll take as our clock, in what follows, the
following device: Let's have two mirrors as
shown in Fig. 2 with a light pulse bouncing
between them. Every time a light pulse is
detected at M we have a tick. If M and N are

% cm apart, each tick corresponds to 1 cm of
light travel time. Every time we detect a flash

at M, we have a needle on a dial advance one tick.

(Iv) THE PRINCIPLE OF SPECIAL RELATIVITY

We can summarize the principle of special

relativity in the following two statements:

ALL THE LAWS OF PHYSICS ARE THE

SAME IN EVERY INERTIAL FRAME

and

THE SPEED OF LIGHT IN VACUUM IS

THE SAME IN ALL INERTIAL FRAMES

What the first statement says is that both the

mathematical form and numerical values of the

physical constants in the laws of physics are

the same in all inertial frames. Thus the laws
of physics cannot be used in anyway to determine
the abgolute velocity of a particular inertial
frame; only relative velocities can be determined.
- The second statement says the speed of light
measured in any frame moving with constant

velocity always has the same value. This of

8

Mirror N
c——

Mirror M

5

Fig. 2: A clock

The period of any other clock
(e.g. a wiistwatch) will be a
multiple of the period of our

special clock., 1§ we now take

both clocks into a moving

inential grame, the ratio of
the periods measured in this
grame must remain unchanged,
otherwise we could determine

that we are moving.

Remember:

You cannot do any experiment
to indicate whether or not

you are moving.



course is the empirical observation made by

Michelson and Morley.

(V) THE LORENTZ TRANSFORMATION

In Section I, we wrote down the Galilean
Lonentz

trhans formation

transformation which related measurements made

in two inertial frames. However, problems arose

with applying the Galilean transformation to

electromagnetic phenomena. Let's start over,

taking care now to apply our basic notions of ]

T

time correctly. We'll consider the transforma- v (x,y,2,t) or

o' 0 (x',y'2',t')
tion between the two frames as shown in Fig. 3. ///// X
r 4

Before writing the general transformation equations,

]
2
we consider three classes of measurements:

a. measurements of space intervals perpendi- Fig. 3
cular to the direction of the velocity v
(transverse dimensions);

b. measurements of time intervals;

c. measurements of space intervals along

the direction of motion.

Notice the language we're using. We are always
after a relation (the Lorentz transformation)

describing intervals between two events as seen

in two inertial frames.

(a) Transverse dimensions: Assume you have the

, Trhansverse Dimensions
two systems moving relative to each other along



the x (x') axis. Let the observer in O make

a mark in 0' on the y'x' plane at height y (Fig. 4).
Similarly let the observer in O' make a mark

in O at a height y and assume they both agreed
before hand to mark at the same height in inches.
The two marks had better coincide, because other-
wise there would be a way of determining which

of the two inertial frames is moving. This, of
course, would violate the principle of special
ralativity. If you think a bit, you come to the
conclusion that intervals measured along y in
frame O agree with measurements of intervals
along y in frame O'. Similarly for z. The

result: Transverse intervals are unchanged under

a Lorentz transformation.

(b) Measurements of time intervals: Suppose we

have a clock which is at rest in the frame 0. The
clock is of the type described in Fig. 2. Every
time the light pulse reaches M, we call that a
clock tick. To be more precise, we say that in
frame O we have two events. Event 1: 1light leaves
mirror M. Event 2: light arrives at mirror M.
Notice that these two events occur at the same
place (in space) in frame O but at different times.
We call the time interval between these two events

At. What is the time interval between these two

10

o' 0

Fig. 4

Trhansverse intervals
are unchanged when
going grom one inertial
frame to another.

Measurement of time

Intervals
N
[ e |
[
AV L
o
I
M

(a) CLock 45 at nest
in grame 0 as viewed
§nom observen in frame 0.

Fig. 5



events, At', as observed in frame 0'? In order

to answer this, look at Fig. 5(b). We notice that

since 0 is moving relative to 0', an observer in
0' does not see the two events (1l: light leaves
M; 2: light arrives at M) occur in the same
place in 0'. The reason is clear. While the
light travels from M to N and back to M, the
mirror M has moved in the O' frame. As a matter
of fact, seen from 0' the light travels the path
shown in Fig. 5(b). As seen in O0', the mirror
M has moved Ax'. The time interval between the
two events as seen in 0' is At'. Now
Ax' = vAt'

The path length the light travels in 0' is

2 [202+ (vAt'/2)2] %

Notice that since 20 is a transverse interval,
it is the same for both O and O'. But since c
has the same numerical value in all inertial

frames then

1
2 [202+ (vAt'/Z)Z]é = cAt'

or

At' = == (3)

Notice, however, that 220/c is just At. We'll

now introduce some commonly used notation:

11

NG
g,

M
=a
(b) The same clock in grame
0' as viewed by an
observer at nest in 0'

N
= -
]

Ax

Fig. 5

Time Dilation
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0

(4)

l]_ - 82 ' (5)

with this we write the general result:

At' = yat  (for ax = 0) (6)

Since y>1, we see that moving clocks appear

to run slower.

This is not just mathematical trickery.
Time dilation is an empirically observed fact.
The classic example is the muon decay. One
refers to the lifetime of a particle as the time it
takes the particle to decay if it's produced at
rest. This number is known for muons. Now
one can then use this lifetime to predict how
far a muon of a certain momentum ought to
travel after production before decaying without
using time dilation. The predicted distance of
travel will always be shorter than what is observed
by exactly the right amount predicted from time

dilation.

Question: 1In reference to the above paragraph,
what are the At, At' and Ax in Eq. (6)? What

are the two events? Be precise in your answer.

(c) Measurements of space intervals along the

direction of motion: In order to see how space

intervals along the direction of motion transform

12

There once was a Lass named
Miss Bright

Who could travel much
fasten than Light

She depanted one day

In an Einsteinean way
And came back on the
previous night.

- G. Gamov

For a discussion of the time
dilation experiment using
muons, see French, Special
Relativity, pp 97 - 104.

"Time dilation works"

Measurement og space
Antenvals along direction
04 motion




let's once again fall back on our trusty

clock. Consider two identical clocks and
orient them as shown in Fig. 6(a). If a

light pulse leaves mirror M and travels to N
and N' the reflected pulses will arrive at M
simultaneously. If we now observe the clocks
from a frame moving along the x-direction the
reflected pulses will still arrive at M
simultaneously. Therefore the observed periods

of both clocks are the same. In the rest frame

of the clocks the period is 220/c. In the
moving frame the observed period is dilated

by the factor Yy as in equation (6).

Now let's concentrate on the clock in
Fig. 6(b). It's important to define precisely
what we mean by the length of our clock (or any
object for that matter) in a moving frame. To
measure the length of an object when it is
moving in relation to us, what we must do is to
measure the coordinates of the two ends at the
same time. This we can do, for instance, by
making marks on a scale when the clock goes by,
as shown in the figure. We will call events a and
b the marking of the two ends on the scale. Since
these markings must be made at the same time

| IS B . " gt =
ta tb 0, and x Xy L.

13
CLOCK —y

We measune the Length

of our clock in a moving
grame by simultaneously
marking the points on the
x'-axis which coincide
with the two ends of the
clock.




As observed in the moving frame (Fig. 6(c)
the length of the clock is & where £ is not
necessarily equal to 20. We will now consider
another pair of events. Event d is the light
pulse leaving mirror M and event e is the light
pulse returning to mirror M. The time interval
between these two events iS'the period observed
for the clock in the moving frame, i.e:

Period = te -ty = Y(ZQO/C).

This period is also equal to the time it takes
light to travel from mirrof M to mirror N and
back again to mirror M, taking into account the
fact that the mirrors are moving. The time

interval for the trip from M to N is At{ where
| - '
L+ VAt1 cAt1

and the time interval for the return trip is

At' where
2
L - vAté = cAt' .
2

Now:

But we also have

(nd
i
T
1]

period = y(220/c)

14

Y
N'T
[C===J
£, N
L= [+
— p —

(a) Two clocks orniented

at 90°

M | ‘ N

< t—>

(b) Clock as seen §rom
grame in which clock
L8 at nest

N
|
|
LM N
(|
! L —
l‘___—.—)ll
VAfllM ) N

=

3
vt 2

M

(c) Same clock as seen f§rom
grame moving with velocity
v along %,

Fig. 6



Therefore

g = RO/Y .

Let's return to the previous pair of
events (a and b) which we used to measure
the clock length £ in the moving frame.

There we had

»
1
b
[]
>
"
L]

g = lo/y

and

We now know how to relate the space intervals

between two events which occur at the same time

in one of the frames. This relation is

Ax' = = (At' = 0) (7

This phenomenon is called length contraction.

15

Length Contraction

There was a young Lad
named F.isk

Whose fencing was ex-
ceedingly brisk

So fast was his action

the Fitzgenald contraction
Reduced his rapien
to a disk.

- G, Gamov



(d) Simultaneity

Before we go on to deriving the general -
form of the Lorentz transformation we will
discuss the implications of results we have
just obtained regarding the concept of simul-
taneous events. In Fig., 7 a light source, L,
is located midway between two detectors Dl and

D At t=0 a flash of 1light is produced by

2.
the light source and is detected simultaneously

Let's refer to the

at t=£o/c by D1 and D2'
arrival of light at Dl as event 1. The arrival
of light at D2 as event 2. The time interval

between these events as observed in the frame

in which L, D, and D, are at rest is At where

1 2
At = - =
t t2 tl 0
We say that the two events are simultaneous.
L
[ ]
D| A [)2
|¢ £~ -Ic £, >|
Fig. 7

Suppose now that we observe these same
. two events (light arriving at D1 and light
“arriving at D2) from a frame 0' moving along
the -x direction with speed v with respect to
.frame 0. Fig. 8 shows what is observed in the

O0' frame. At t' = 0, the light source flashes

16

Simultaneity
(on the Lack of Lit)

Simultaneous

Events

Simultaneous events in
one grame viewed grom
another grame



. Figure 8a). Of course the distance between

D, and the light source and D, and the light

1 2

source is now observed to be Lorentz-contracted

by the factor 1/y. At t' = ti event 1 occurs:

light is detected by D (Fig. 8b). In this

1

case the detector is moving forward at speed
v to meet the light moving at velocity c. At

t' = té event 2 occurs: light is detected by

D2 (Fig. 8c¢). However now D, was moving at

2
speed v away from the light.

2 - D2
'l = _\O/_ ]
. (a) N

lk 2o ﬁbld 30 D'

I ¥ | ¥ !

| ! |

| I ]

. D | D2

(b) fll : E‘NVWVVV\N| O | :]

|

l"l’ c*l' —-.| |I th' + ctl. = :§—O
|
i

(c)

‘ Fig. &




From Fig. 8b and Fig. 8c we see that

[
vt! + et! = 29
1 1 Y
and
)
- vt! 4+ect! = °
2 2 Y

Solving for ti and té
=% 1

t] = 2
1 Yy o
2, 1
t =0 _
t2 Y Cc-V

SO

22, W
S S B (4
At t2 tl Y ——

or

At' = 2By %
¢ (8)

So the result is that At'#o and conse-
quently events 1 and 2 are not simultaneous
for an observer in the moving frame. So
two events simultaneous but spatially separated
in a given frame are not simultaneous in another
frame. What led to this lack of simultaneity?

The invariance of the speed of light, ¢, is the

answer.

(e) The general form of the Lorentz Transfor-

mation: We now have come to the problem of
relating two events which ;re separated in
both space and time. We then observe these
intervals in another frame moving with respect

to the original frame. So far we have con-

18

Genernal fornm of the
Lonentz trhansformation



sidered the transformation of time intervals

between events occurring at the same point

in space (that led to time dilation) and

space intervals between events occurring at

the same time (which led to length contraction).

We're now ready to tackle a more difficult problem.
Let us now orient our clock in its rest frame

so that it is neither aligned along the x- or y-axis

(see Fig 9(a)). A light pulse travels from mirror M to

N. This gives us two events separated in space
and time. The two events are: Event 1: 1light
leaves mirror M; Event 2: 1light arrives at

mirror N. In the rest frame the x and y intervals
between these events are £ and d respectively. Let
us now go to a frame moving along the x direction
and ask what the space-time intervals between the
gsame two events are in this frame. In the rest

frame:
Ax = & (9)

|d2 + 22 (10)

While in the moving frame:
Ax' = $.+vAt' (11)

cAt' = sz + Ax'2 (12)

From (9) and (11):

Ax' = %f + v At'

cAt

or
Ax

I

y(Ax' -vAt'") (13)

Of course the transverse space intervals, Ay and Az

(b)

19

A
ve
=1

)
1
|
1
!
!
|
]
|

I
o 2 vt |

Same clock as seen
grom a grame moving
along the x-axis

Fig. 9

are unchanged in going from the rest frame to the moving frame.
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. From (10), (12) and (13) and a little algebra
(see problem 3.)

At = y(At' - %2 A%') (14)

There we have it, the complete Lorentz
transformation equations. Adding the result

that transverse intervals do not change we

have:
Ax = y(bx' -vAt')
Ay = Ay'
Ay =Ag' (15) General Form of the

Lorentz Thansformation

At = y(At' —l‘c’.z Ax')

The primed intervals are measured in the 0' frame
which is moving to the left in the O frame with
velocity v. To get the inverse relations simply
interchange primed and unprimed intervals and

replace v by -v. (see problem 4)

The two events which we used to arrive at
equations (15) are a special pair of events. These How genenal ane

are two events which are connected by a light pulse equations 15 ?

so that in any given frame, the space interval, As,

between the two events is equal to the time interval,

At, between the two events times c, the speed of light.

What if we have a pair of events which cannot be connected

by a light pulse ? Can the space-time intervals between
. these events be transformed from one inertial frame to

the other by using equations (15) ? The answer is yes.
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We will now show why equations 15 are more general
than they might first appear.
One possible pair of events not connected
by a light pulse is a pair for which cAt > As (in
the language of the physicist these events are said N

to be separated by time-like intervals). Consider

the figure to the right which shows two of our clocks.

We M o

A light pulse travels from mirror M to N to O. —

have 3 events:

event 1: 1light pulse leaves mirror M

event 2: light pulse reflects off mirror N vuiangement o

two clocks showing

event 3: light pulse arrives at mirror O

Events 1 and 2 are conmected by a light pulse as are example of two events

events 2 and 3. However events 1 and 3 cannot be con- which cannot be

nected by a light pulse since cAt» As. Since equa- connected by a

Light pulse.

tions (15) can be used to transform space-time intervals

(

tz-tl and sz-sl) between events 1 and 2 as well as

space-time intervals (t and s ) between events

37t 3752
2 and 3 it should be obvious that they therefore allow
us to transform the space-time intervals (t3—tl and
s3~sl) between events 1 and 3.

Another possibility is to have two events for which

AsycAt (such events are said to be separated by a space-like

interval). The figure on the next page shows another ar-

rangement of clocks in which we have a light pulse leaving
mirror M and arriving at mirrors N and O. Note that the

two clocks have differing lengths. Again we have 3 events:



event 1l: 1light pulse leave mirror M

event 2: light pulse arrives at mirror N

event 3: 1light pulse arrives at mirror O.
As before, events 1 and 2 are connected by a light pulse
as are events 1 and 3. But now events 2 and 3 cannot
be connected by a light pulse. In this case As JcAt.
Since equations (15) can be used to transform intervals
between events 1 and 2 and to transform intervals between
1 and 3, they can also be used to transform intervals
between events 2 and 3. So we see that equations (15)
can be used to transform space-time intervals between

any pairs of events from one inertial frame to another.

22
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N &3 /0
Anothern arrange-

ment 0§ clocks o
show an example

04 iwo events which
cannot be connected

by a Light pulse.



(VI) CAUSALITY

One often hears the statement that information
cannot be transmitted with speeds greater than the
speed of light. In fact there has been a lot ofv
discussion in physics literature lately about the Tachyons
possibility of the existence of tachyons (faster
than 1light particles). In order to study the
existence of tachyons within the theory of relativity,
consider the following thought experiment. Suppose
in a fit of passion, Uxl of planet X decides to
do away with his friend, Nork. He takes aim at
him with a special ray-gun (which will only stun
him, please) whose rays travel with a velocity V
greater than the speed of light. 1In their frame
we have two events: Uxl firing his ray gun and
Nork dropping upon receiving the stunning ray.

So in the Uxl-Nork frame, the two events are

separated by Ax and At.

Now let's look at these two events from another
frame which is moving withvelocity v with respect to Uxl & Nork.
In this moving frame, an observer sees the two
events separated by the time interval At':
At' = y(at - Y Ax)
c2
But in the Uxl-Nork frame, Ax is traveled by the

powerful ray in time At so

23.



Ax = V At
't — v
At y{At -V At)
o2
v
= ybe (1 =] - (16)

But notice, if X_is greater than 1, it's
c

possible for Zq.z to be greater than one with
c ¢

z. <1 (aphysically realizable situation)which
means that the factor in Eq. (16) multiplying
At could be negative. This would mean our
moving observer could see Nork dropping before
Uxl fires his ray gun. See Fig. 10. This
violates causality. Conclusion: Causality

implies that no information can travel with

speed greater than c, the speed of light.

Fig. t0:

A violation of causality
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25.

(VI1) ADDITION OF VELOCITIES

Suppose we have a particle in frame O' moving
with velocity v' in frame O'. (Fig. 11) The compo-
nents are v;, v;, and v;. We want to find the
velocity of this particle as seen from frame O Addition of
which is moving with velocity V with respect to O'. Vetocities

> >
Do we simply take v' = v - gc? The answer is no.

We explicity calculate v = Ax/At and so on.
From Eqs. (15): Note: B =<

Ax = y(Ax' - VAt")

Ay = Ay'

Az’

Az

At

y(At' - }%2-AX')

So v Ax _ y(bx'-VAt")

¥ At yat'= vV Ax")
(] y yl

or: '
v. = X (17) -
\

1
c™ X
_ Ay _ Ay' /
\'/ vy —

y(At'—%zAx') . z z

or: 1
_r2 '

¢ =NITET vy (18)

y

1-Y, V! Fig. 11

and 2 '
v = ‘1 B v,

1 - %2 v! (19)
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IX)

Problems and Questions

The basic idea of the Michelson-Morley
experiment was to measure the velocity

of light as seen from a frame of reference
fixed with respect to the earth, in two
perpendicular directions. A schematic of
the experiment is shown in Fig. 1.
of light S, is collimated by lens C. M is
a half silvered mirror, M1 and M2 are per-
fectly reflecting mirrors. Part of the
light from S follows the path C-M—MZ—M—T;
the other part of the light follows the
path C—M—Ml-M—T. At the telescope, T, one
looks at the light intensity which will be
a function of the phase relation of the
recombining beam. Assume now that the in-
ferometer is traveling through the ether
with velocity v.

a) Show that, referring to our figure,
the two combining light rays are out of
phase by an amount A¢l, where:

Lv2%
Ac?

A¢1 = 27

(b) Rotate the appartus through 90° and

make a second measurement. In that case

*these equations are valid only if v << c.

A source

27.
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ANALYZE THIS EXPERIMENT
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The change in phase is A¢, where:

) 2
Ay = =27 W,

Ac?
(c) The change in phase before and

after rotating the appartus is given by

2
A=41T£v—

Ac?
Michelson and Morley used %= 103cm and

A=6x10 °cm If we assume that the
velocity of the earth with respect to the
ether is ~10—4c, we get A ¥ 3 radians., With this
value of A how would observations before and
after the 90° rotation compare?
Fill in the algebraic steps leading to equation
(8).
Fill in the algebraic steps leading to equation
(14).
Show explicitly, by inverting equations (15)
that the inverse Lorentz transformations are
given by replacing v with -v.
Show that if Losis the volume of a cube
measured in the rest frame of the cube then
the volume viewed from a frame moving with
velocity v in a direction parallel to an edge
of a cube is

L3 = L3/y
Show that in the limit of an infinite value
for the speed of light, ¢, the Lorentz trans-—

formation equations (15) reduce to the

28.

Forn the fun of it
calewlate A using
special nelativity.

Some healthy algebraic
" ghung e"

Lonentz thansformation

Volume Contraction



Galilean transformatinn equations (1).

Show from the Lorentz transformation equations
(15) that two events simultaneous (tl=t2) in a
given frame but separated in space (x1 ¢ xz)
are not in general simultaneous in another
frame.

Show, using the addition of velocity equations

developed in Section VII, that a photon moving

with velocity ¢ in frame O' will still be moving

with velocity ¢ in another frame moving with
respect to frame O'-

When Einstein was a boy, he mulled over the
following puzzles. A runner looks at himself
in a mirror that he holds at arms length in
front of him. If he runs with nearly the
speed of light, will he be able to see himself
in the mirror? Analyze the answer in terms of

relativity.
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10. (from Spacetime Physics by Taylor and

Wheeler.) A worried student writes 30.

"Relativity must be wrong. Consider
. a pole 2L meters long carried so
fast in the direction of its length
that it appears to be only L meters
long in the laboratory frame of

reference. Therefore, at some

instant the pole can be entirely

THAT BARN'S

enclosed in a barn L meters long. 2

However, look at the same situation S‘: &
from the frame of reference of the X l'
runner. To him the barn appears ' I =

contracted to half its length.
How can the pole fit into the
barn? Does not this unbelievable
conclusion prove that relativity
contains somewhere a fundamental
logical inconsistency?"
Write a reply to the worried
‘ student explaining clearly and
carefully how the pole and barn
are treated by relativity with-

out contradiction.
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11.

The twins paradox. A goes on a trip
to « Centarui (L meters away) and back
again. He travels at speed v with
respect to the earth both ways, and
transmits radio signals of frequency
fo in his own rest frame.

For the following remember that when
an observer travels towards a source of
light (or any electromagnetic radiation)

the frequency he observes is shifted and

_\|1+8
£ '\Jl-s fo

- . 0

is given by

7\

31.

The twin "paradox"
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a) How many signals does A receive before
he turns aroung? How many in his return
trip? What is then, ﬁhe total number of
signals received by A?

b) How many signals does B receive before
A turns around?

c) How many signals does B receive during
A's return trip? (Be careful!)

d) What is the total number of signals
received by B?

e) Who is younger at the end of the trip?




