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(I) INTRODUCTION

These notes discuss how the predictions

which follow from the theory of special rela

tivity, such as time dilation and length contrac

tion, can be derived quite easily from a simply

stated axiom. That axiom is:

ALL THE LAWS OF PHYSICS ARE THE SAME

IN EVERY INERTIAL REFERENCE FRAME.

A careful application of the above axiom will

lead us to what we are after here, the Lorentz

transformation, of which time dilation and length

contraction are a part. What the Lorentz trans

formation does for us is link measurements made

in one reference system with measurements made in

another reference system moving with constant velo

city with respect to the first. Once we have de

rived the Lorentz transformation and have built

up a good comfortable feeling with it, we will

study the consequences of applying the Lorentz

transformation.

The precise genius of Einstein's work in

inventing the theory of special relativity was

in making clear what we mean by certain basic

notions about which we have strong prejudices.

These include the notions of time, measurements
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and reference frames within which measurements

of time and distances, that is space-time mea

surements, are made. It is important to define

and understand these notions very clearly. Once

one does, the "common-sense-defying" predictions

of special relativity follow in a way that is

amazingly simple from the axiom stated above.

(II) THE GALILEAN TRANSFORMATION

Before discussing the Galilean transformation,

we will define a very important concept, that of

the inertial reference frame, or simply the inertial

frame.

AN INERTIAL FRAME IS A FRAME OF REFERENCE

IN WHICH A BODY NOT UNDER THE INFLUENCE

OR FORCES AND INITIALLY AT REST WILL REMAIN

AT REST.

Notice that with this definition, accelerating

frames, such as rotating frames, are not con

sidered to be inertial frames.

Now the question is, how does one link measure

ments made in two inertial frames moving with con

stant velocity with respect to one another. To

consider a specific example, let's take reference

frame 0 moving with velocity v. with respect to

Vz^-iviction
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reference frame Of along the 21 axis.

(See Fig. 1) The transformation from

one reference frame to the other of space

and time coordinates is almost "too obvious"

to require stating it:

x' = x + vt

y» = y

(1)
z = z

t1 = t

The above set of equations is referred to

as the Galilean transformation and seems

almost obvious, or is it?

Let us consider what implications this

Galilean transformation has when we analyze

physics with Newton's second law:

$ - ma (2)

If we have a particle of mass m as shown in

Fig. 1, the 3 component equations of Eq. (2)

as given in frame 0 are:

i - J*
dt2

(2f)
dt2

d2z
n

dt2

These equations then tell us what the motion

of the particle will be in frame 0. If we

FlguUte. 1
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transform to frame 01 using Eq. (1), we note that

t = t' and d2x'/dt'2 = d2x/dt2 , the latter

following by differentiating x'=x + vt with

respect to t^ twice. The second derivatives

with respect to time of y1 and z' are equal to

those of y and z, respectively. Also the com

ponents of the force, F, are the same along x and

x1. Similarly, this holds true for the com

ponents along the y and z directions. The

result: Newton's laws are the same in any

inertial frame. This we learn from applying

the Galilean transformation.

The other physical phenomena in classical

physics are electromagnetic. All these are

successfully described by the four Maxwell's

Equations which predict the existence of

electromagnetic waves; light is just that, an

electromagnetic wave. It was found that when

one applied the Galilean transformations to

Maxwell's equations, the mathematical form of

the equations changed. Moreover, the electro

magnetic waves, whose existence was predicted

by Maxwell's equations, had a propagation velocity

which was different in inertial frames which

were moving with uniform velocity with respect

to one another. There was another way of looking
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at this problem. All waves travel in a

medium; sound in air, for example. The velocity

of the wave will change if the observer is moving

relative to the medium. It was thought that

there had to be a medium for the electromagnetic

wave, light. This medium was called the ether.

One could imagine that the ether is fixed in

some frame. It would follow then that electro

magnetic disturbances, in other words, light,

would travel with different velocities in dif

ferent moving inertial frames. This search for

the ether was carried out in an experiment in 1887

by Michelson and Morley. Their result was a null

result. There was no ether or, to put it another

way, experimentally it was observed that the

speed of light, c_, was the same in moving inertial

frames.

So the situation before Einstein and the theory

of special relativity was the following:

The laws of classical mechanics (Newton's laws)

are the same, that is, have the same mathematical

form, in all inertial frames. This we see to be

consistent with the Galilean transformation. How

ever, this is not the situation with electromagnetic

laws, Maxwell's equations. However, although we
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might expect an ether to exist which would be

the medium for electromagnetic waves, the

experiment of Michelson and Morley showed

that this ether does not exist. Consequently the

speed of light in vacuum is independent of the motion

of the observer and independent of the motion of

the source.

(Ill) SOME BASIC NOTIONS

Before we go on to deriving the Lorentz

transformation, we define here some very basic

notions. It is important to do this, since it

was only after earlier prejudices about these

notions were discarded that the dilemma of

classical physics was cleared up and special

relativity invented.

a- Event: The concept of an event in physics

is just as fundamental as the concept of place is

in surveying. An event is specified by a place

and time of happening. Therefore, one needs four

coordinates to describe an event: (x, y, z, t).

Example of an event: a flash of light

b. Time: This is most crucial. Time, at least

as far as it concerns the physicist, is not a

metaphysical, absolute "flowing" thing. Rather,

it is no more sacred than space. If we have

THE IMPORTANT ASSUMP
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two events> each specified by space-time

coordinates (x» y, z, t) and (xq , yQ, zq, t ),

we measure the distance between these events in

meters, for example. That means we hold a meter

stick in our hand and count how many tick marks

on the meter stick lie between x and x . We do
o

the same for y and y and z and z . What about
o o

t and t .
o

Well, t and t should be treated exactly
o

the same way as x and Xj or y and y and z and

z . Only this time instead of counting how many

ticks on the meter stick are between x and x ,
o

we measure how many ticks of a clock there are

between t and t . So we measure the x, y and

z separations between events in meters, but the

time separations in seconds. With the discovery

that light as determined by all observers always

travels at the same speed, c, we can use such a

speed as a conversion factor between time intervals

and space intervals.

c. Clocks: Clocks are things which produce ticks

which allow us to measure time intervals.

Examples are: 1) mechanical clock

2) rotating earth

3) your own pulse

Hotz-
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We'll take as our clock, in what follows, the

following device: Let's have two mirrors as

shown in Fig. 2 with a light pulse bouncing

between them. Every time a light pulse is

detected at M we have a tick. If M and N are

h cm apart, each tick corresponds to 1 cm of

light travel time. Every time we detect a flash

at M, we have a needle on a dial advance one tick.

(IV) THE PRINCIPLE OF SPECIAL RELATIVITY

We can summarize the principle of special

relativity in the following two statements:

Mirror N

ALL THE LAWS OF PHYSICS ARE THE

SAME IN EVERY INERTIAL FRAME

and

THE SPEED OF LIGHT IN VACUUM IS

THE SAME IN ALL INERTIAL FRAMES

What the first statement says is that both the

mathematical form and numerical values of the

physical constants in the laws of physics are

the same in all inertial frames. Thus the laws

of physics cannot be used in anyway to determine

the absolute velocity of a particular inertial

frame; only relative velocities can be determined.

The second statement says the speed of light

measured in any frame moving with constant

velocity always has the same value. This of

I
Mirror M

Vlg. 2: A clock
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course is the empirical observation made by

Michelson and Morley.

(V) THE LORENTZ TRANSFORMATION

In Section I, we wrote down the Galilean

transformation which related measurements made

in two inertial frames. However, problems arose

with applying the Galilean transformation to

electromagnetic phenomena. Let's start over,

taking care now to apply our basic notions of

time correctly. We'll consider the transforma

tion between the two frames as shown in Fig. 3.

Before writing the general transformation equations,

we consider three classes of measurements:

a. measurements of space intervals perpendi

cular to the direction of the velocity v

(transverse dimensions);

b. measurements of time intervals;

c. measurements of space intervals along

the direction of motion.

Notice the language we're using. We are always

after a relation (the Lorentz transformation)

describing intervals between two events as seen

in two inertial frames.

(a) Transverse dimensions: Assume you have the

two systems moving relative to each other along

t
(x.y.z.t) or

(x'.y'.z'.f)
x

VIq. 3



the x (x1) axis. Let the observer in 0 make

a mark in 0' on the y'xf plane at height y (Fig. 4).

Similarly let the observer in 01 make a mark

in 0 at a height y and assume they both agreed

before hand to mark at the same height in inches.

The two marks had better coincide, because other

wise there would be a way of determining which

of the two inertial frames is moving. This, of

course, would violate the principle of special

ralativity. If you think a bit, you come to the

conclusion that intervals measured along y in

frame 0 agree with measurements of intervals

along y in frame 0'. Similarly for z. The

result: Transverse intervals are unchanged under

a Lorentz transformation.

(b) Measurements of time intervals: Suppose we

have a clock which is at rest in the frame 0. The

clock is of the type described in Fig. 2. Every

time the light pulse reaches M, we call that a

clock tick. To be more precise, we say that in

frame 0 we have two events. Event 1: light leaves

mirror M. Event 2: light arrives at mirror M.

Notice that these two events occur at the same

place (in space) in frame 0 but at different times.

We call the time interval between these two events

At. What is the time interval between these two

10

Hg. 4

ate. unchanged when

going faom one. t

{Kme. to anotheSL.

Mea&unment o& time

N

1
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-in ^nxme. 0 a6 viewed

ob.6eA.veA In {home. 0.

Fig. 5
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events, At', as observed in frame 0'? In order

to answer this, look at Fig. 5(b). We notice that

since 0 is moving relative to 01, an observer in

0' does not see the two events (1: light leaves

M; 2: light arrives at M) occur in the same

place in 0'. The reason is clear. While the

light travels from M to N and back to M, the

mirror M has moved in the 01 frame. As a matter

of fact, seen from 0' the light travels the path

shown in Fig. 5(b). As seen in 0', the mirror

M has moved Ax1. The time interval between the

two events as seen in 0' is At'. Now

Ax' = vAt'

The path length the light travels in 0* is

Notice that since & is a transverse interval,
o

it is the same for both 0 and 0'. But since c

has the same numerical value in all inertial

frames then

2 hQ2+ (vAt'/2)21% = cAt'

or

n /c

At' =, (3)

Jl-v2/c2

Notice, however, that 21Jc is just At. We'll

now introduce some commonly used notation:

(b) The. Aamz cZock In

0' a6 V4.ewe.d by an

ob&eJiveA at ftut -in 0'

Fig. 5
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3 = v/c

Ji - e2'

with this we write the general result:

(4)

(5)

At1 = YAt (for Ax = 0) (6)

Since y>l> we see that moving clocks appear

to run slower.

This is not just mathematical trickery.

Time dilation is an empirically observed fact.

The classic example is the muon decay. One

refers to the lifetime of a particle as the time it

takes the particle to decay if it's produced at

rest. This number is known for muons. Now

one can then use this lifetime to predict how

far a muon of a certain momentum ought to

travel after production before decaying without

using time dilation. The predicted distance of

travel will always be shorter than what is observed

by exactly the right amount predicted from time

dilation.

Question: In reference to the above paragraph,

what are the At, At' and Ax in Eq. (6)? What

are the two events? Be precise in your answer.

(c) Measurements of space intervals along the

direction of motion: In order to see how space

intervals along the direction of motion transform

once. wxu> a Zcu>6 namzd

tla>& ZnJught

Who could txavoJL much

fiaiteA than tight
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a ducuAAion o£ the. tone,
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let's once again fall back on our trusty

clock. Consider two identical clocks and

orient them as shown in Fig. 6(a). If a

light pulse leaves mirror M and travels to N

and N1 the reflected pulses will arrive at M

simultaneously. If we now observe the clocks

from a frame moving along the x-direction the

reflected pulses will still arrive at M

simultaneously. Therefore the observed periods

of both clocks are the same. In the rest frame

of the clocks the period is 21 /c. In the

moving frame the observed period is dilated

by the factor y as in equation (6).

Now let's concentrate on the clock in

Fig. 6(b). It's important to define precisely

what we mean by the length of our clock (or any

object for that matter) in a moving frame. To

measure the length of an object when it is

moving in relation to us, what we must do is to

measure the coordinates of the two ends at the

same time. This we can do, for instance, by

making marks on a scale when the clock goes by,

as shown in the figure. We will call events a and

b the marking of the two ends on the scale. Since

these markings must be made at the same time

t' - t' = 0, and x1 - x/ = I.
a b a d

Ill (T

b

CLOCK

a

We meoiuAe the. Length

oh oun. cZock in a moving

huome. by Aimultane.out>ly

mcuilung the. point* on the.

x'-axc& which, coincide,

vxcth the. two end& oh the.
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As observed in the moving frame (Fig. 6(c)

the length of the clock is I where I is not

necessarily equal to I . We will now consider

another pair of events. Event d is the light

pulse leaving mirror M and event e is the light

pulse returning to mirror M. The time interval

between these two events is the period observed

for the clock in the moving frame, i.e:

Period /c).

This period is also equal to the time it takes

light to travel from mirror M to mirror N and

back again to mirror M, taking into account the

fact that the mirrors are moving. The time

interval for the trip from M to N is At' where

H + vAt1 = cAtJ

and the time interval for the return trip is

At' where
2

I - cAt' .
2

Now:

t - t = At; 4-

I +. I

c - v c + v

2£c
—————— :

2 2 - v2/c2

But we also have

t - t, = period = y{.2l /c)

N

(a) Two clock* ofilzntzd

at 90°

M N

(b) Clock ou, &2.zn

fan/mz. In which clock

M N

M

vAt1,

N

m n

vA?2

(c) Same, clock a6 4een

){A«nie moving wLth velocity

v along %

Tig. 6



Therefore

15

Let's return to the previous pair of

events (a and b) which we used to measure

the clock length I in the moving frame.

There we had

x' -x' = Ax'
a b

- IJy

and

t1 - t' = At' = 0
a b

x -x=Ax=Jl
a b o

We now know how to relate the space intervals

between two events which occur at the same time

in one of the frames. This relation is

Ax'
Ax

(At' = 0) (7)

This phenomenon is called length contraction.

Length Contraction

wai> a young lad

namzd F-cife

Who*?. Ending uxu> ex-

aLddLngly brva>\i
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(d) Simultaneity

Before we go on to deriving the general

form of the Lorentz transformation we will

discuss the implications of results we have

just obtained regarding the concept of simul

taneous events. In Fig. 7 a light source, L,

is located midway between two detectors D- and

D«. At t=0 a flash of light is produced by

the light source and is detected simultaneously

at t=£Q/c by D and D . Let's refer to the

arrival of light at D. as event 1. The arrival

of light at D as event 2. The time interval

between these events as observed in the frame

in which L, D^ and D? are at rest is At where

At = t2 - t± = 0

We say that the two events are simultaneous.

L

SimulXan&ity

[on the. lack oh it)

Simu&tamouA

Event*

I- I

Tig. 7

Suppose now that we observe these same

two events (light arriving at D and light

arriving at D») from a frame 0' moving along

the -x direction with speed v with respect to

frame 0. Fig. 8 shows what is observed in the

0' frame. At t' = 0, the light source flashes

owl

cLYiotken.

Z\HLYVt&

viewed



Figure 8a). Of course the distance between

D1 and the light source and D. and the light

source is now observed to be Lorentz-contracted

by the factor 1/y. At t1 = t' event 1 occurs:

light is detected by D. (Fig. 8b). In this

case the detector is moving forward at speed

v to meet the light moving at velocity c. At

t1 = t' event 2 occurs: light is detected by

D_ (Fig. 8c). However now D was moving at

speed v away from the light.

D,

(a)
t'

(b)

D.

vt,

ct.'

1

(c)

A

O

LSI

Vtc

17

vt 1 ♦ ct1

°2

— vt2-*-ct2
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From Fig. 8b and Fig. 8c we see that

vti + cti " y

and

" vt2 + ct2 = y

Solving for tj and t^

SO

or

Y c_v

- t- -t;

At' - 23Y _J°
c (8)

So the result is that AtVo and conse

quently events 1 and 2 are not simultaneous

for an observer in the moving frame. So

two events simultaneous but spatially separated

in a given frame are not simultaneous in another

frame. What led to this lack of simultaneity?

The invariance of the speed of light, c, is the

answer.

(e) The general form of the Lorentz Transfor-

mation: We now have come to the problem of

relating two events which are separated in

both space and time. We then observe these

intervals in another frame moving with respect

to the original frame. So far we have con-

Ganznal &ofvm o£ thz
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sidered the transformation of time intervals

between events occurring at the same point

in space (that led to time dilation) and

space intervals between events occurring at

the same time (which led to length contraction).

We're now ready to tackle a more difficult problem.

Let us now orient our clock in its rest frame

so that it is neither aligned along the x- or y-axis

(see Fig 9(a)). A light pulse travels from mirror M to

N. This gives us two events separated in space

and time. The two events are: Event 1: light

leaves mirror M; Event 2: light arrives at

mirror N. In the rest frame the x and y intervals

between these events are I and d respectively. Let

us now go to a frame moving along the x direction

and ask what the space-time intervals between the

same two events are in this frame. In the rest

frame:

Ax = I

cAt = Id2 + l2

While in the moving frame:

Ax' = _
Y

cAt' = Jd2 + Ax'2

(9)

(10)

(ID

(12)

(6)

From (9) and (11):

Ax
Ax' = _ + v At1

or

Ax = ' -vAt') (13)

(a)

N

clock

K 4 -Kvit'*

Scum clock cub

ln.om a fiAame. moving

along thz x.-clxaj>

fig. 9

Of course the transverse space intervals, Ay and Az

are unchanged in going from the rest frame to the moving frame.
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From (10), (12) and (13) and a little algebra

(see problem 3.)

At = Y(At' - L? Ax1) (14)
c

fhere we have it, the complete Lorentz

transformation equations. Adding the result

that transverse intervals do not change we

have:

Ax = Y(Ax'

Ay *» Ay'

Az =Az'

At = Y(Atf

-vAt')

-12 Ax')

(15)

The primed intervals are measured in the 0' frame

which is moving to the left in the 0 frame with

velocity v. To get the inverse relations simply

interchange primed and unprimed intervals and

replace v by -v. (see problem 4)

Lotinntz

The two events which we used to arrive at

equations (15) are a special pair of events. These

are two events which are connected by a light pulse

so that in any given frame, the space interval, As,

between the two events is equal to the time interval,

At, between the two events times c, the speed of light.

What if we have a pair of events which cannot be connected

by a light pulse ? Can the space-time intervals between

these events be transformed from one inertial frame to

the other by using equations (15) ? The answer is yes.

Hou) one.

75 ?
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We will now show why equations 15 are more general

than they might first appear.

One possible pair of events not connected

by a light pulse is a pair for which cAt > As (in

the language of the physicist these events are said

to be separated by time-like intervals). Consider

the figure to the right which shows two of our clocks.

A light pulse travels from mirror M to N to 0. We

have 3 events:

event 1: light pulse leaves mirror M

event 2: light pulse reflects off mirror N

event 3: light pulse arrives at mirror 0

Events 1 and 2 are connected by a light pulse as are

events 2 and 3. However events 1 and 3 cannot be con

nected by a light pulse since cAt>As. Since equa

tions (15) can be used to transform space-time intervals

(t -t and s?-s ) between events 1 and 2 as well as

space-time intervals (t«-t« and s.-s^) between events

2 and 3 it should be obvious that they therefore allow

us to transform the space-time intervals (t^-t.. and

s_-s1) between events 1 and 3.

Another possibility is to have two events for which

As>cAt (such events are said to be separated by a space-like

interval). The figure on the next page shows another ar

rangement of clocks in which we have a light pulse leaving

mirror M and arriving at mirrors N and 0. Note that the

two clocks have differing lengths. Again we have 3 events:

two ctock& 6h.om.ng

zxampte. o{j two ovantb

\ahJjnh cannot be

connzctzd by a

tight puJUe..
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event 1: light pulse leave mirror M

event 2: light pulse arrives at mirror N

event 3: light pulse arrives at mirror 0.

As before, events 1 and 2 are connected by a light pulse

as are events 1 and 3. But now events 2 and 3 cannot

be connected by a light pulse. In this case As>cAt.

Since equations (15) can be used to transform intervals

between events 1 and 2 and to transform intervals between

1 and 3, they can also be used to transform intervals

between events 2 and 3. So we see that equations (15)

can be used to transform space-time intervals between

any pairs of events from one inertial frame to another.

N

knothoA aAJiangz-

mcnt oi clock* to

6how an 2.xampZz

o£ two nvcntA which

cannot be connzctzd

by a tight puZ&e..
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(VI) CAUSALITY

One often hears the statement that information

cannot be transmitted with speeds greater than the

speed of light. In fact there has been a lot of

discussion in physics literature lately about the

possibility of the existence of tachyons (faster

than light particles). In order to study the

existence of tachyons within the theory of relativity,

consider the following thought experiment. Suppose

in a fit of passion, Uxl of planet X decides to

do away with his friend, Nork. He takes aim at

him with a special ray-gun (which will only stun

him, please) whose rays travel with a velocity V_

greater than the speed of light. In their frame

we have two events: Uxl firing his ray gun and

Nork dropping upon receiving the stunning ray.

So in the Uxl-Nork frame, the two events are

separated by Ax and At.

Now let's look at these two events from another

frame which is moving with velocity v with respect to Uxl & Nork.

In this moving frame, an observer sees the two

events separated by the time interval At':

At' = y(At - Z.oAx)
c2

But in the Uxl-Nork frame, Ax is traveled by the

powerful ray in time At so
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Ax = V At

At1 = Y(At -I_V At)
c2

-YAt(l-jI) (16)

But notice, if _ is greater than 1, it's
c

v V
possible for _, _ to be greater than one with

c c

^r < 1 (a physically realizable situation) which

means that the factor in Eq. (16) multiplying

At could be negative. This would mean our

moving observer could see Nork dropping before

Uxl fires his ray gun. See Fig. 10. This

violates causality. Conclusion: Causality

implies that no information can travel with

speed greater than £, the speed of light.

F-ig. tO: A violation o& oau&aLOty
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(VII) ADDITION OF VELOCITIES

Suppose we have a particle in frame 0' moving

with velocity v' in frame 0'. (Fig. ll) The compo

nents are v', v', and v1. We want to find the
x' y z

velocity of this particle as seen from frame 0

which is moving with velocity V with respect to 0'.

Do we simply take v' = v - pc? The answer is no.

tfe explicity calculate v

From Eqs. (15)

Ax

Ay

Az

At

So

v -
X

or:

V
X

» Ax/At

= Y(Ax' - VAV)

= Ay'

= Az'

= Y(At' - —r Ax')

Ax _ Y(Ax'-VAt')

At Y(At'-

v' - V
= X

i- v
c x

V Ax1)

c

and so

Note:

on.

(17)

= Ay =

or:

and

v .£
y

V = V
z

y (18)

(19)

Addition of.

o1

Fig. 11
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IX) Problems and Questions

1. The basic idea of the Michelson-Morley

experiment was to measure the velocity

of light as seen from a frame of reference

fixed with respect to the earth, in two

perpendicular directions. A schematic of

the experiment is shown in Fig. 1. A source

of light S, is collimated by lens C. M is

a half silvered mirror, M and M are per

fectly reflecting mirrors. Part of the

light from S follows the path C-M-M -M-T;

the other part of the light follows the

path C-M-M -M-T. At the telescope, T, one

looks at the light intensity which will be

a function of the phase relation of the

recombining beam. Assume now that the in-

ferometer is traveling through the ether

with velocity v.

a) Show that, referring to our figure,

the two combining light rays are out of

phase by an amount A<j>.. , where:

= 2tt
£v2*

Ac2

(b) Rotate the appartus through 90° and

make a second measurement. In that case

t
M.

M, -+-X

M

Fig. 1

MlcheLi on-

ExpeJumznt

ANALYZE THIS EXPERIMENT

USING N0N-RELAT1VJSTIC

PHYSICS. That l&,

that c aj> thz &pe.ed

tight In the, nthoji

*these equations are valid only if v < < c.



The change in phase is A<f>2 where:
28.

A<j>2 = -2tt

Xc2

(c) The change in phase before and

after rotating the appartus is given by

A = 4tt

Xc2

Michelson and Morley used H= 103cm and

X = 6 x 10 5 cm. If we assume that the

velocity of the earth with respect to the

ether is -10 c, we get A ? 3 radians. With this

value of A how would observations before and

after the 90° rotation compare?

Fill in the algebraic steps leading to equation

(8).

Fill in the algebraic steps leading to equation

(14).

Show explicitly, by inverting equations (15)

that the inverse Lorentz transformations are

given by replacing v with -v.

Show that if L is the volume of a cube
o

measured in the rest frame of the cube then

the volume viewed from a frame moving with

velocity v in a direction parallel to an edge

of a cube is

L3 - L3/Y

Show that in the limit of an infinite value

for the speed of light, c, the Lorentz trans

formation equations (15) reduce to the

fon. tkz (Jan oi -Lt

A uu><Lng

Somz hzalthy

"giunge."

Lon&ntz

Volumz ConOui(ition
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Galilean transformatinn equations (1).

7. Show from the Lorentz transformation equations

(15) that two events simultaneous (t-,=t2) in a

given frame but separated in space (x. ^ x»)

are not in general simultaneous in another

frame.

8. Show, using the addition of velocity equations

developed in Section VII, that a photon moving

with velocity c in frame 01 will still be moving

with velocity c in another frame moving with

respect to frame 0'*

9. When Einstein was a boy, he mulled over the

following puzzles. A runner looks at himself

in a mirror that he holds at arms length in

front of him. If he runs with nearly the

speed of light, will he be able to see himself

in the mirror? Analyze the answer in terms of

relativity.



10. (from Spacetime Physics by Taylor and

Wheeler.) A worried student writes

"Relativity must be wrong. Consider

a pole 2L meters long carried so

fast in the direction of its length

that it appears to be only L meters

long in the laboratory frame of

reference. Therefore, at some

instant the pole can be entirely

enclosed in a barn L meters long.

However, look at the same situation

from the frame of reference of the

runner. To him the barn appears

contracted to half its length.

How can the pole fit into the

barn? Does not this unbelievable

conclusion prove that relativity

contains somewhere a fundamental

logical inconsistency?"

Write a reply to the worried

student explaining clearly and

carefully how the pole and barn

are treated by relativity with

out contradiction.

30.
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11. The twins paradox. A goes on a trip

to «t Centarui (L meters away) and back

again. He travels at speed v with

respect to the earth both ways, and

transmits radio signals of frequency

f in his own rest frame,
o

For the following remember that when

an observer travels towards a source of

light (or any electromagnetic radiation)

the frequency he observes is shifted and

is given by

Thz twin "pasuxdox"
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a) How many signals does A receive before

he turns aroung? How many in his return

trip? What is then, the total number of

signals received by A?

b) How many signals does B receive before

A turns around?

c) How many signals does B receive during

A's return trip? (Be careful!)

d) What is the total number of signals

received by B?

e) Who is younger at the end of the trip?

t


