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Gravitational Field and its Potential
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Isaac Newton

What Isaac Newton achieved was truly remarkable and he was also a remarkable man. To abstract from all
the astronomical observation known at the time – the motion of the moon and planets – down to a simple
universal law that explains all terrestrial and astronomical phenomena involving masses is awesome. On top
of that he invented calculus so that he could have the mathematics needed to do calculations. James Gleick
recently wrote a nice and short biography of Newton. He also wrote a biography of Feynman. The definitive
biography of Newton was written by the late Richard Westfall, who was a professor at Indiana University.

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Newton.html

Figure 1: Sir Isaac Newton - on a medallion issued by the Royal Mint upon his death.

Gravitational field

We start with the following assumption about the gravitational force exerted by a particle of mass m fixed
at the origin of coordinates on a test mass m0 located a distance r from the origin. That force is:

F = −G
mm0

r2
eR (1)

This assumption comes from observation – it is not derived. The minus sign tells us that the force is
attactive. Also the force acts along the line connecting the two particles and varies inversely as the square
of the distance. The gravitational constant G is a universal constant. As far as we know, it has the same
value throughout the universe and that value is G = 6.672 × 10−11 Nm2kg−2.

In analogy to how we define the electric field, we can forget about making reference to the test mass m0 and
define a vector field given by:
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g = −G
m

r2
eR (2)

We can imagine the space around the mass m being filled with a vector field g and a particle of mass m0

placed in this field will experience a force F = m0g.

From equation 2 it immediately follows that ~∇× g = 0 which means the the field g is conservative and we
can associate a potential Φ with this field where g = −~∇Φ – in analogy to how we associate an electrical
potential φ with the electric field E.

Superposition and the gravitational field Here is something else that follows from observation. The
gravitational field follows the principle of superposition. If m0 is in the gravitational field of two other masses
m1 and m2 then we can compute the vector force of m1 on m0 ignoring m2 and then compute the force of
m2 on m0 ignoring m1 and then vectorially add the two. It did not have to be this way – that’s how the
gravitational force works and being able to use superposition makes life a whole lot easier.

In general, the field at a point located by r0 due to N masses mi located at ri is given by:

g = −G

N∑
i=1

mi

r2
i

e0i (3)

where e0i is a unit vector along ri − r0.

Gravitational field and potential

The gravitational potential a distance r away from a particle of mass m is given by:

Φ(r) = −
Gm

r
(4)

The potential at some point due to N masses mi each located at ri from the point is given by:

Φ = −G

N∑
i=1

mi

ri

(5)

Gravitational potential of a thin mass shell

Figure 2 shows a thin spherical shell of mass M and radius a. We want to calculate the gravitational potential
Φ at point P a distance R from the center of the shell. We assume that the mass is uniformly distributed
over the surface of the shell and the mass per area is σ = M/4πR2.
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Figure 2: A thin spherical shell of mass M produces a gravitational potential as point P .

We will divide the shell into little strips as, shown in the figure, each of which goes around the shell. The
area of the strip is dA = 2πa2 sin θdθ and the mass of this strip is dM = σdA and all points of this strip are
equidistant from the point P and this distance is r. The contribution to the potential from this strip is:

dΦ(r) = −
GdM

r
(6)

We have an expression for the square of the length of r: r2 = a2 + R2
− 2aR cos θ. As we integrate over all

the strips on the shell note that r varies while a and R are constant – but θ changes. Taking the differential
of r2 results in 2rdr = 2aR sin θdθ. We now have:

dΦ(r) = −
σG2πa2 sin θdθ

r
= −

σG2πadr

R
(7)

When we integrate over the shell r goes from R − a to R + a:

Φ(r) = −
σG2πa

R

∫
R+a

R−a

dr = −
GM

R
(8)

The shell of mass produces a potential at point P as if all the mass of the shell were concentrated at the
center of the shell. Now suppose that the point P is inside the shell. What changes? The limits of the
integration variable r are now from a − R to a + R:

Φ(r) = −
σG2πa

R

∫ a+R

a−R

dr = −
GM

a
(9)

The significance of this is that the potential is the same everywhere inside the shell.

The gravitational vector field g is related to the potential by the relation ~g = −~∇Φ. So we see that everywhere
inside the shell g = 0 and outside g = −GMêr/r.
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Gravitational potential of a thick mass shell

Consider now a shell with finite thickness with inner radius b and outer radius a. We assume the shell has
mass M that is uniformly distributed with constant mass per volume ρ = M/V where V = 4π(a3

− b3)/3.

b

a

Figure 3: A thick spherical shell of mass M with inner radius a and outer radius b.

The potential outside the shell, a distance R from the center of the shell where R > a is simply Φ(R) =
−GM/R. What about inside the shell where R < b? We know that the potential everywhere inside is the
same and equal to the value of the potential at the center. So we calculate the potential here. Consider a
shell of thickness dr and radius r where b < r < a. The volume of this shell is dV = 4πr2dr and the mass is
dm = ρdV and contributes potential dΦ = −Gdm/r. Integrating:

Φ = −Gρ4π

∫
b

a

r2dr

r
= −Gρ2π(a2

− b2) (10)

Now what about a point R where b < R < a? The mass contained from r = b to r = R is M1 =
4π(R3

− b3)/3 and contributes potential Φ1 = −GM1/R while the mass from r = R to r = a contributes
Φ2 = −Gρ2π(a2

− R2). The total potential:

Φ(R) = −
Gρ4π

3R
(R3

− b3) − Gρ2π(a2
− R2) (11)

Flux of the gravitational field

Suppose we have an imaginary sphere of radius R centered on a point mass m. At each point on the surface
of the sphere the field vector g is perpendicular to the surface, directed towards the center of the sphere and
everywhere on the surface has magnitude g = GmR2/. The flux of g over the sphere is −g4πR2 or flux =
−4πGm. The minus sign occurs because at any point on the surface of the sphere the normal to the surface
points away from the center of the sphere and g is anti-parallel to the surface normal. The flux for this
special case is independent of the radius of the sphere.

Now suppose the particle of mass m is not centered in the sphere? Before we answer that question please
refer to Figure 4. We draw two lines through mass m and then a line (dashed line) in between. Rotate
the original two lines through 180◦ about the dashed line to sweep out two cones. Consider where these
cones intercept some surface. First look at the intercepted and shaded areas I and III. Both areas are
perpendicular to the dotted line (by assumption). We’ll assume that these are small enough so that we can
assume that all parts of the areas are perpendicular to the dotted line. The distances these area are from
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Figure 4: A thick spherical shell of mass M with inner radius a and outer radius b.

the mass are r1 and r3. Area III is larger than area I in the ratio r2
3/r2

1. But the magnitude of g at area
III is smaller than the magnitude over area I by the ratio r2

1/r2
3. For both areas g is perpendicular to the

surface. So the flux of g over the two areas is the same.

Now consider area II. It’s surface normal makes angle θ with respect to the dotted line. Area II is larger
than area I r2

2/r2
1 but there is yet another factor 1/ cot θ. The magnitude of g at area II is smaller than

the magnitude over area I by the ratio r2
1/r2

2 and in addition, when we calculate the flux we need to include
cos θ to account for the angle between the surface normal and g. The upshot of this all is that the flux over
all shaded three areas is the same and equal to any other area intercepted by these cones. Using this, we can
see after adding up over all cones, that the flux of g over a sphere is the same no matter where the mass is
located inside the sphere. The the surface does not even have to be a sphere. It could be any closed surface
– you still get the same answer as long as the mass is inside.

So with complete generality you can write:

∮
g · n̂da = −4πGm (12)

The integral symbol
∮

indicates a closed surface. Using our cone argument we can also show that the flux
over a closed surface is zero if the mass is outside the surface. Finally, using superposition, when mass is
continuously distributed with volume charge density ρ that might vary over space then:

∮
g · n̂da = −4πG

∫
ρdV (13)

The volume integral is taken over the volume bounded by the closed surface over which the flux (LHS) is
computed.
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