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Sample problems using Lagrangian mechanics

Here are some sample problems. I will assign similar problems for the next problem set.

Example 1 In Figure 1 we show a box of mass m sliding down a ramp of mass M . The ramp moves
without friction on the horizontal plane and is located by coordinate x1. The box also slides without friction
on the ramp and is located by coordinate x2 with respect to the ramp.
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Figure 1: A box slides down a ramp without friction and the ramp slides along a horizontal surface without
friction.

The kinetic energy of the ramp TM is given by:

TM =
1

2
Mẋ2

1
(1)

and the kinetic energy of the box Tm is given by:

Tm =
1

2
m

(

ẋ2

1
+ ẋ2

2
+ 2ẋ1ẋ1 cos θ

)

(2)

The velocity of the box is obviously derived from the vector sum of the velocity relative to the ramp and the
velocity of the ramp.

The potential energy of the system is just the potential energy of the box and that leads to:

U = −mgx2 sin θ (3)
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and finally the Lagrangian is given by:

L(x1, ẋ1, x2, ẋ2) = TM + Tm − U =
1

2
Mẋ2

1
+

1

2
m

(

ẋ2

1
+ ẋ2

2
+ 2ẋ1ẋ1 cos θ

)

+ mgx2 sin θ (4)

The equations of motion are:

d

dt

∂L

∂ẋ1

=
∂L

∂x1

(5)

and

d

dt

∂L

∂ẋ2

=
∂L

∂x2

(6)

Equation 5 leads to:

d

dt
[m(ẋ1 + ẋ2 cos θ) + Mẋ1] = 0 (7)

The RHS of equation 7 is zero because the Lagrangian does not explicitly depend on x1. The quantity in
the brackets is the total momentum in the horizontal direction which is a constant since there are no forces
on the system in this direction.

Application of equation 6 leads to:

d

dt
(ẋ2 + ẋ1 cos θ) = g sin θ (8)

Carrying out the time derivatives in equations 7 and 8 leads to two linear equations in ẍ1 and ẍ2. These
two equations in two unknowns can be solved to yield:

ẍ1 =
−g sin θ cos θ

(m + M)/m − cos2 θ
(9)

and

ẍ2 =
g sin θ

1 − m cos2 θ/(m + M)
(10)

The RHS of both of the above equations are constants – we can easily find x1(t) and x2(t).
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Figure 2: A simple pendulum attached to a support that is free to move.

Example 2 Figure 2 shows a simple pendulum consisting of a string of length r and a bob of mass m that
is attached to a support of mass M . The support moves without friction on the horizontal plane.

The x component of the velocity of the bob is given by ẋ + rθ̇ cos θ and the y component by rθ̇ sin θ. So the
overall kinetic energy of the system is given by:

T =
M

2
ẋ2 +

m

2

[

ẋ2 + r2θ̇2 + 2ẋrθ̇ cos θ
]

(11)

The potential energy is:

U = −mgr cos θ (12)

and the Lagragian:

L(x, ẋ, θ, θ̇) =
1

2
(m + M)ẋ2 +

1

2
(r2 θ̇2 + 2ẋrθ̇ cos θ) + mgr cos θ (13)

Apply Lagrange’s equations:

d

dt

∂L

∂ẋ
=

∂L

∂x
(14)

and

d

dt

∂L

∂θ̇
=

∂L

∂θ
(15)

to get:
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d

dt

[

(m + M)ẋ + mrθ̇ cos θ
]

= 0 (16)

and

d

dt

[

m(r2θ̇ + ẋr cos θ)
]

= −m(ẋrθ̇ + gr) sin θ (17)

Equatio 16 leads to a conserved quantity – the momentum along the x direction and equation 17 gives us:

θ̈ +
ẍ

r
cos θ +

g

r
sin θ = 0 (18)

Note that when the support is moving with constant velocity (ẍ = 0) we just have the equation of motion
for a pendulum.

Suppose we set θ̈ = 0. Then:

tan θ = −

ẍ

g
(19)

If we accelerate the support to the right then the pendulum hangs motionless at the angle given by the above
equation.

Example 3 The figure shows a mass M connected to another mass m. Mass M moves without friction
along a circle of radius r on the horizontal surface of a table. The two masses are connected by a massless
string of length ℓ that passes through a hole in the table. At given time the mass M is located by r and θ.
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Figure 3: Example 3.

The kinetic energies of the mass on the table TM and the hanging mass Tm are given by:
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TM =
1

2
M(ṙ2 + r2θ̇2)

Tm =
1

2
mṙ2

The potential energy is U = mgr so the Lagrangian is:

L =
1

2
M(ṙ2 + r2θ̇2) +

1

2
mṙ2

− mgr (20)

Applying:

d

dt

∂L

∂ṙ
=

∂L

∂r
d

dt

∂L

∂θ̇
=

∂L

∂θ

The equations of motion are:

(M + m)r̈ = Mrθ̇2
− mg

d

dt

(

Mr2θ̇
)

= 0

The quantity in the parenthesis in the second of the above two equations is a conserved quantity since the
Lagrangian does not explicitly depend on θ.

Example 4 A particle of mass m is free to move without friction on the inside of a hemispherical bowl
whose axis is aligned along the vertical. The radius of the hemisphere is R and the particle is located by the
polar angle θ and the azimuthal angle φ.

The Lagrangian is:

L =
mR2

2

(

φ̇2 sin2 θ + θ̇2

)

+ mgR cos θ (21)

Applying:

d

dt

∂L

∂θ̇
=

∂L

∂θ
d

dt

∂L

∂φ̇
=

∂L

∂φ
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Figure 4: Example 4.

the equations of motion become:

mR2θ̈ = −mgR sin θ + mR2 sin θ cos θφ̇2

d

dt

(

mR2 sin2 θφ̇
)

= 0

If φ̇ = 0 then the first of these looks like the equation of motion for a simple pendulum: θ̈ = −(g/R) sin θ
and the quantity in the parenthesis in the second equation is a constant of the motion, a conserved quantity,
because the Lagrangian does not explicitly depend on φ.
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