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Figure 1

Plane Mirrors

Let’s talk about mirrors.  We start with the relatively simple case of plane mirrors.  Suppose we have
a source of light, we will call this the object,  located a perpendicular distance o from a plane mirror
as shown in Figure 1.  We consider two rays of light from the object.  One ray strikes the mirror at
zero angle with respect to the normal.  According to the law of reflection, the reflected ray comes
back along the same path.  Another ray strikes the mirror at some angle θ  with respect to the normal
and reflects through the same angle.  Now extrapolate back the two reflected rays.  They meet at a
point on the other side of the mirror - the rays apparently emerge from an image.  From the drawing
it is easy to see that the distance, i, between the image and mirror is the same as from the object to
the mirror, or:

i = o

This is as simple as it gets.  Note that the image is virtual.  If you were to put a phototube at the
image position, you would detect no photons from the source.
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Figure 2

Looking at Yourself in a Mirror

If you look at yourself in a mirror you appear upright but left and right are reversed.  If your face
lacks bilateral symmetry - and we all lack that in varying degrees - your image in the mirror is
different from how others see you or from a photograph of your face.  Anyway, the interesting thing
is that the mirror flips left with right but not top with bottom.  Does this bother you?

Suppose you hold a gyroscope which is spinning along an axis which is vertical and parallel to
mirror.  Suppose it is spinning such that you say the angular momentum vector is pointing up.  What
is the direction of the angular momentum vector for the mirror image of the gyro?  Now go through
the same analysis but now for the axis horizontal but still parallel to the mirror plane.  How are the
angular momentum vectors of the object and image related.  Now consider the case when the axis of
spin is perpendicular to the mirror.

It is also interesting to note, as can be seen from the drawing in Figure 2, that if you want to view
yourself from top to bottom, you need a mirror whose length  is only half of your height.

Multiple Plane Mirrors

Consider two plane mirrors at right angles to each other as shown in Figure 3.  We show a source of
light and four rays emerging from the source.  Rays 1 and 4 correspond to a single reflection off one
mirror or the other.  Again, the incident and reflected angles are symmetric about the normal to the
mirror at the point where the incident ray strikes.  Rays 2 and 3 emerge from the source and undergo
two reflections each - one off of each mirror.

There are two trivial rays we have not drawn, one ray which is perpendicular to one of the mirrors
and the other ray to the other mirror. In each case the reflected ray follows the same line.  So we now
consider the six reflected rays (the four drawn and the two normals) and extrapolate them back as
indicated by the dotted lines to the right of and below the mirrors.  The reflected rays apparently
emerge from three images.  Note the position of
the images.  The images are all virtual - again, if
you put a phototube at the image positions you
would not detect photons from the source.  Also
note that one of the images (the one which might
have surprised you) is due to two reflections off of
the mirrors.

While we are on the subject of perpendicular
mirrors, take another look at rays 2 and 3.  Note
that the reflected ray is parallel to the incident ray
in each case.  This arrangement is sometimes
called a corner reflector.  If we add a third mirror
perpendicular to each of the first two, we get a
really robust corner reflector.
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Figure 3

I’ve drawn the object along the 45o  line bisecting the angle between the mirror.  How would the

picture change if the object were off to either side of the 45o  line?

It is interesting to consider what happens when you allow the angle between the mirror to vary.
Calling this angle θ  we just considered θ = π / 2 .  The case of a single mirror corresponds to θ = π .
How many images do you expect for some arbitrary θ ?  It turns out that you only get a finite num-
ber of images for:

θ =
π
N

    N = integer

and the number of images is 2 N−1  which is in line with N = 1  single plane mirror with one image,
N = 2 ,  θ = π / 2  for two perpendicular mirrors and N = ∞,  θ = 0  which corresponds to two parallel
mirrors with a source in between.  What happens for other angles?

Let’s return to the case of two parallel mirrors.  You get an infinite number of images.  Actually you
don’t see an infinite number because those other images, which appear farther and farther away are
due to more and more reflections.  Real mirrors are not perfectly reflecting.  For example, if the
mirror is 90% reflective, after 10 reflections the light intensity is reduced to 35 % of the original
intensity.
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Figure 4

Spherical Mirrors

Now we will consider spherical mirrors that can either be concave or convex.  Figure 4 shows a
source shining on a concave mirror.  The source is on the axis of the mirror.  The x indicates the
center of curvature.  The distance between the source and mirror surface is denoted by o (object
distance).  Note that a ray of light along the axis would simply be reflected back along the same
path.  Consider a ray which emerges along a line making angle α  with respect to the axis.  It strikes
the mirror and is reflected symmetrically with respect to the radius drawn from the center of curva-
ture to the point on the mirror where the ray strikes the mirror.  The reflected ray intersects the axis
at a distance i from the mirror.  This is the location of the image.  We call this a real image.  A
phototube placed here would detect photons from the source.  What is the relation between the
distances o and i?

Referring again to the figure we note these relationships:

From these we arrive at:

α +γ = 2β

We will denote by s the arc length along the mirror from the axis to the point where the top ray
strikes the mirror.  We then have:

α ≈
s

o
;  γ ≈

s

i
;  β =

s

R

Note that these approximations are good only if the angles are small enough.  From this we get:

β =α + θ
γ = α + 2θ
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where f = R / 2 .  Note that if the source is infinitely far away, then o = ∞  and i = f  - the rays are
focused at the focal point.

For a plane mirror R = ∞ and we get i = −o , i.e. the object and image distances are equal. The
image distance is negative, indicating that the image is on the other side of the mirror and therefore
virtual.

By convention, we take the radius of curvature to be positive for a concave  mirror and negative  for
a convex mirror.

In and earlier note we compared a parabola and circle.  The paraboloid focuses perfectly and the
sphere only approximately as along as the angles are small.  In Figure 5 we show what happens to
incident parallel rays on a concave mirror for rays which are close and far from the mirror axis.  This
lack of perfect focusing is referred to as a spherical aberration.
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Concave Mirrors

Now consider Figures 6 (a) and (b).  Here we show an object located in front of a concave mirror for
two cases.  In Figure 6 (a) the object is between the focal point and mirror and in Figure 6 (b) the
object is beyond the focal point.  Two rays are sufficient to find the image.  Take one ray from the
top of the object and parallel to the mirror axis.  The reflected ray will pass through the focal point.
The other ray goes from the top of the object to where the axis intersects the mirror.  That ray is
reflected symmetrically about the axis.

In Figure 6 (a) the extrapolated reflected rays intersect on the other side of the mirror, the image is
virtual.  Also, using the mirror equation above we have i < 0  since o < f , again indicating that the
image is virtual.  The image is upright and magnified.  Magnifying mirrors used as ‘makeup’ mirrors
have a large enough radius of curvature so that when you are reasonably close to the mirror you see
an upright and magnified image of your face.  The background behind you is, however, inverted.
More on that now.

Figure 6 (b) shows the reflection of the parallel ray and the ray incident from the top of the object to
the center point on the mirror.  The reflected rays now intersect on the same side of the mirror as the
object but now the object is inverted.  So the image is real and inverted.  Inspection of the figure also
shows that the magnification is given by:

m = −
i

o

Note the minus sign which indicates that the image is inverted.  Note that if the object is at the center
of curvature the image and object coincide and the image is inverted and has the same size as the
object.
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Convex Mirror

Figure 7 shows the two reference rays for an object placed in front of a convex mirror.  The focal
length is negative which means then that the image distance is always negative (image on the other
side of the mirror and virtual) and the image is upright (positive magnification).  The image is
always smaller than the object as well.  The passenger-side side view mirror on most cars is a convex
lens with the warning that “objects in the mirror are closer than they appear” as you will remember
from the movie Jurassic Park.

I generated the ray tracing diagrams in this
note with the Ray program distributed by
Physics Acadmic Software.  This program is
available for your use.


