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PHY 4822L (Advanced Laboratory): 
 

Analysis of a bubble chamber picture 
 

Introduction 
Elementary particles are everywhere around us [1,2]. Apart from the standard matter particles 
proton, neutron and electron, hundreds of other particles have been found [3], produced in cosmic 
ray interactions in the atmosphere or by accelerators. Hundreds of charged particles traverse our 
bodies per second, and some will damage our DNA, one of the reasons for the existence of a 
sophisticated DNA repair mechanism in the cell.  
 

 
Figure 1: Photograph of the interaction between a high-energy π--meson from the Berkeley 
Bevatron accelerator and a proton in a liquid hydrogen bubble chamber, which produces two neutral 
short-lived particles Λ0 and K0 which decay into charged particles a bit further. 
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Figure 2: illustration of the interaction, and identification of bubble trails and variables to  be  
measured  in the photograph in Figures 3 and 4. 
 
 
The data for this experiment is in the form of a bubble chamber photograph which shows bubble 
tracks made by elementary particles as they traverse liquid hydrogen. In the experiment under  
study, a beam of low-energy negative pions (π- beam) hits a hydrogen (p for proton) target in the 
form of a container with liquid hydrogen normally kept just below its boiling point (T=20 K). As 
the pions enter the detector a piston slightly decompresses the liquid so it becomes "super-critical'' 
and starts boiling, and  bubbles form, first at the ionization trails left by the charged particles 
traversing the liquid.  
 
The reaction shown in Figure 1 shows the production of a pair of neutral particles (that do not leave 
a ionized trail in their wake), which after a short while decay into pairs of charged particles:  
 

π - + p → Λ0 + K0 ,  
where the neutrals decay as follows: 
 

Λ0 → p + π -,        K0 → π+ + π-.  
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In this experiment, we assume the masses of the proton (mp = 938.3 MeV/c2) and the pions (mπ
+ = 

mπ
- = 139.4 MeV/c2) to be known precisely, and we will determine the masses of the Λ0 and the K0, 

also in these mass energy units. 
 

Momentum measurement 
In order to “reconstruct” the interaction completely, one uses the conservation laws of (relativistic) 
momentum and energy, plus the knowledge of the initial pion beam parameters (mass and 
momentum). In order to measure momenta of the produced charged particles, the bubble chamber is 
located inside a magnet that bends the charged particles in helical paths. The 1.5 T magnetic field is 
directed up out of the photograph. The momentum p of each particle is directly proportional to the 
radius of curvature R,  which in turn can be calculated from a measurement of the “chord length” L 
and sagitta s as: 
 

r = [L2/(8s)] + [s/2] , 
 
Note that the above is strictly true only if all momenta are perfectly in the plane of the photograph; 
in actual experiments stereo photographs of the interaction are taken so that a reconstruction in all 
three dimensions can be done. The interaction in this photograph was specially selected for its 
planarity. 
In the reproduced photograph the actual radius of curvature R of the track in the bubble chamber is 
multiplied by the magnification factor g, r = gR. For the reproduction in Figure 3,  g = height of 
photograph (in mm) divided by 173 mm. 
 
The momentum p of the particles is proportional to their radius of curvature R in the chamber. To 
derive this relationship for relativistic particles we begin with Newton's law in the form:  

 
F = dp/dt = e  v×B       (Lorentz  force).  

 
Here the momentum (p) is the relativistic momentum m v γ, where the relativistic γ-factor is defined 
in the usual way 

  γ = [√(1- v 2/c2)]-1. 
 
 Thus, because the speed v is constant: 
 

F = dp/dt = d(mvγ)/dt = mγ dv/dt = mγ (v2/R)(-r) = e v B (-r) , 
 
where r is the unit vector in the radial direction. Division by v on both sides of the last equality 
finally yields: 

mγv /R = p /R = e B , 
 
identical to the non-relativistic result!  In “particle physics units” we find:  
 

p c (in eV) = c R B , 
  

thus    p (in MeV/c) = 2.998•108 R B •10-6  =  300 R (in m) B (in T) 
(1) 
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Measurement of angles 
Draw straight lines from the point of primary interaction to the points where the Λ0 and the K0 
decay. Extend the lines beyond the decay vertices. Draw tangents to the four decay product tracks at 
the two vertices. (Take care drawing these tangents, as doing it carelessly is a source of large 
errors.) Use a protractor to measure the angles of the decay product tracks relative to the parent 
directions (use Fig. 3 or 4 for measurements and Fig. 2 for definitions).  

 

Analysis 
The laws of relativistic dynamics relevant to this calculation are written below. We use the 
subscripts zero, plus, and minus to refer to the charges of the decaying particles and the decay 
products. 
 
 
 
 

p+sinθ+ = p-sinθ- 
 (2) 

p0 = p+cosθ+ + p-cosθ- 
 (3) 

E0 = E+ + E-,        
where    E+ = √(p+

2c2 + m+
2c4) ,    and    E- = √(p-

2c2 + m-
2c4) 

 
  

m0c2 = √(E0
2 - p0

2c2)   
 
 
Note that there is a redundancy here. That is, if p+, p-, θ+, and θ- are all known, equation (2) is not 
needed to find m0. In our two-dimensional case we have two equations (2 and 3), and only one 
unknown quantity m0, and the system is over-determined. This is fortunate, because sometimes (as 
here) one of the four measured quantities will have a large experimental error. When this is the case, 
it is usually advantageous to use only three of the variables and to use equation (2) to calculate the 
fourth. Alternatively, one may use the over-determination to "fit''  m0, which allows to determine it 
more precisely. 
 
K0 decay 
 

1. Measure three of the quantities r+, r-, θ+, and θ-. Omit the one which you believe would 
introduce the largest experimental error if used to determine mK.  

2. Use the magnification factor g  to calculate the actual radii R and equation (1) to calculate 
the momenta (in MeV/c) of one or both pions.  

3. Use the equations above to determine the rest mass (in MeV/c2) of the K0.  
4. Estimate the error in your result from the errors in the measured quantities.  
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]Λ]Λ]Λ]Λ0 decay: 

 
1. The proton track is too straight to be well measured in curvature. Also, θ+ is small, and the value 

of mΛ is quite sensitive to this measurement. Assume that θ+ = (0.32±0.05)° (check this with 
your protractor). Measure r- and θ-.  

2. Calculate mΛ and its error the same way as for the K0.  
3. Finally, compare your values with the accepted mass values (the world average) [3], and 

discuss.  
 

Bonus question: (25% extra credit) 
Calculate the momenta for both neutral particles, and hence find their lifetimes, both in the 
laboratory, and in their own rest-frames. Compare the latter with the accepted values [3]. 
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Note: Experiment adapted from PHY 251 lab at SUNY at Stony Brook (Michael Rijssenbeek)  
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Figure 3 : Photograph of the interaction between a high-energy π--meson from the Berkeley 
Bevatron accelerator and a proton in a liquid hydrogen bubble chamber. The interaction produces 
two neutral particles Λ0 and K0, which are short-lived and decay into charged particles a bit further. 
The photo covers an area (H•W) of 173 mm • 138 mm of the bubble chamber. In this enlargement, 
the magnification factor  g = (height (in mm) of the photograph )/173 mm. 
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Figure 4 : Negative of  photograph of Fig. 3. 
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